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Abstract This paper discusses the challenges in achiev-
ing bio-signal-based design environments. While the main
motivation of this paper was to provide a user interface for
physically disabled people to express their artistic natures,
a special emphasis is given on graphical user interface
design where bio-signals are the single input source. Among
three bio-signal sources investigated—electromyography,
electrooculography and electroencephalography (EEG)—
stimulus-based human—computer interaction design (EEG
feature extraction method) is found to be the most promising
for achieving design environments to perform complex tasks.
In the proposed stimulus-based brain—computer-interaction
application, the user communication with a computer is
achieved by coupling intended functionalities with stim-
uli signals on the computer screen. Constant focus on the
intended command stimulates the brain. In return, the brain
releases a response signals (steady state visual evoked poten-
tial). In theory, brain’s response signals and the stimulus
signals are identical. Once successfully identified, the pres-
ence of a signal pattern that is identical to the one of the
alternative stimulus signals (paired with a command in a user
interface) indicates the intention of a user. Since each option
is associated with a unique signal pattern, multiple options
can simultaneously be offered to users. The main challenge
of working with stimulus signals is that the response signals
are weak and they are buried inside of highly polluted EEG
signals that include brain’s natural activities. In this paper,
we introduce a signal processing algorithm based on Lorenz
systems of differential equations for identifying the source of
stimulus signals. Our experiments strongly suggest that bio-
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signal-based design environments to perform complex tasks,
including geometric modeling can be achieved by utilizing
stimulus-based signal processing methodology.
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Introduction

For physically disabled people, bio-signals offer potentials
to replace hand functions for manipulating assistive devices
such as wheelchairs or computers. The objective of the work
presented in this paper is to improve the control capability of
bio-signals, and thus to positively contribute to the develop-
ment of bio-signal-controlled assistive devices for physically
disabled people. While this work has been motivated by the
idea of developing a bio-signal-based geometric design envi-
ronment, the results presented in the paper have potentials to
develop large variety of computer applications for the phys-
ical challenged people.

In bio-signal-based research and applications, the control
capability of bio-signals is affected by the bio-signal acqui-
sition method and the signal processing techniques. Three
types of bio-signal formats are widely used and studied in
literature: EMG, EOG, and EEG signals. EEG signals reflect
the brain’s neuron activities. EOG signals recode eye move-
ments, and EMG signals reflect muscle activities. Advances
in bio-signal acquisition technologies and signal processing
methods in recent years are leading to less dangerous and
highly controllable bio-signal-based industrial applications
such as smart wheelchair design (Wei et al. 2008).
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While several application domains related to human-—
computer interaction (HCI) have been explored by res-
earchers and industry in order to improve the lives of
physically disabled people, not many studies have focused on
the artistic expression in the form of 3D geometric modeling.
While many products are particularly designed for physi-
cally disabled people, their input for the design process is
limited. It is widely accepted that one can best contribute
to the design of a product through direct involvement in the
design process. Furthermore, expression of artistic nature is
desired by all humans, and opportunities should be provided
to all as the technology advances. Hence, the objective of this
research is to outline the fundamentals of a prototype geomet-
ric modeling platform that can be used by physically disabled
people for artistic expression. The objectives are achieved by
replacing hand functionalities by signals received from the
body in the form of EEG signals. The results of the research
discussed in this paper will contribute to the development
of computer applications for the physically disabled people
to interact with highly complex user interfaces including the
3D geometric modeling.

In order to build a brain—computer interface (BCI) that
is solely controlled by bio-signals, two important aspects
should be tackled in detail: (i) a user interface that enables
various options effectively; and (ii) a bio-signal process-
ing algorithm that can capture the intention of a user with
high accuracy from raw bio-signal data. The proposed bio-
signal processing algorithm enables us to design a user
interface that simultaneously offer multiple options which
is similar to the drop-down menu in PCs or App menu of
tablets or touch screen platforms. After investigating EMG-,
EOG- and EEG-based control options, despite high accu-
racy rates for capturing intention (a unique signal associated
with a computer command in our case), EMG and EOG
signals are not found to be suitable for designing com-
plex interactive systems. EMG signals which are the result
of neuromuscular activation associated with a contracting
muscle and EOG signals which are the potential difference
observed during eye movements provide limited number of
options simultaneously. Therefore, a computer application
based on EMG or EOG signals would not enable us to
design complex user interfaces which include a large number
of options/functionalities simultaneously. In order to better
motivate the readers, let us consider a typical file opening
function in the Microsoft Word. Opening a file in Microsoft
Word requires least two steps navigation:

e Move cursor to Open command

e Click left mouse button to reach the file list
e Move cursor to the desired file name

e Click left mouse button to open the file

In order to perform above described task using bio sig-
nals, it is essential to establish a medium between brain
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and computer to identify user’s first- “move cursor’- and
second—"click left mouse button”- intentions. Among three
bio-signal sources investigated in this research, only stimulus
based (EEG signals) approach can perform above described
effectively. EMG and EOG based approaches on the other
hand require the formulation and memorization of signal pat-
terns to perform each action. EMG signals would require the
generation of a unique sequence of muscle contractions (eg.
move pinky finger twice followed by a single stroke of ring
finger). Similarly, to perform the same task using EOG sig-
nals, a unique eye movement pattern should be generated.
Keeping in mind that, a typical software such as Microsoft
Word provides several options simultaneously for users to
select one at each step, both EMG and EOG signal based
approaches require the memorization of a large number of
patterns (muscle contractions or eye movements) for interact-
ing with computers. Hence, in this study, we concluded that
EEG signals are the most suitable signal source to achieve
the desired goals.

It is known that, brain responds to a stimulating signal by
producing an identical response signal in the form of EEG
(Bin et al. 2009a,b). This characteristic of the brain gives
us an opportunity to design a stimulus based BCI. Let us
consider a simple calculator application. In order to control
this calculator using stimulus based BCI, a unique signal-
source is required to represent each number and arithmetic
operator. When a user focuses on a unique signal-source (a
number or an operator in the case of calculator application),
brain will be stimulated by the signal source and will generate
an identical response signal. If a response signal associated
with a unique function (a number or arithmetic operator in
the case of calculator) is identified through a signal process-
ing technique, it can be used to trigger the corresponding
(intended) action. Hence, a user interface design with sev-
eral options/functionalities where each option/function is
linked to a unique signal can be modeled. Unlike other two
bio-signal sources (EMG and EOG) that require the memo-
rization of patterns, the resulting EEG based BCI application
only requires user’s constant attention to the intended com-
mand until brain response is successfully captured.

Although stimulus-based interface design (EEG-based
design) has several advantages, capturing the true intention
of a user from a signal cloud that includes natural brain
functions, noise and the response to the stimulation as a
weak periodical signal is a challenging research problem to
tackle. In this paper we introduce a signal processing method
to detect steady state visual evoked potential (SSVEP) as
an input to BCI which utilizes external stimuli-triggered
EEG signals to achieve a hand-free manipulation. Previ-
ously, Wu et al. (2008) and Muller-Puts et al. (2005) have
introduced hand-free manipulation functionalities based on
SSVEP. In our case, we use flickering visual targets that gen-
erate periodical stimulation signals to stimulate the brain.
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These targets represent various options for users to per-
form. In the literature, three types of stimulator designs are
reported: light-emitting diode (LED), cathode ray tube (CRT)
and liquid crystal display (LCD). A performance compari-
son for these three stimulator types is provided in Wu et al.
(2008) suggests that despite lower stimulation intensity, LCD
based stimulators performs better for SSVEP based applica-
tions. Moreover, in their work, Cecotti et al. (2010) show
that stimuli signal on the LCD screen is the best option to
achieve stimulus based BCI applications. Main challenge in
working with stimulus based BCI application is the identi-
fication of weak response signal inside of highly polluted
EEG signal cloud. EEG signals generated as a result of
brain’s natural activities as well its response to the random
environmental factors is much stronger than its response to
the artificially generated stimuli signal. This paper intro-
duces a signal processing method for detecting the presence
of the weak brain response to the stimulus signal. Further-
more, the proposed signal detection method is imbedded into
a geometric modeling platform where a user can perform
geometric modeling actions such as drawing splines or para-
metric surfaces through responding to various commands that
are linked to unique stimulation signals. While the proposed
geometric modeling application is a proof of concept, it has
potentials to be further enhanced to assist physically disabled
people to perform more modeling tasks.

The remainder of this paper is organized as follows. A
brief literature review that is most relevant to the proposed
user interface design methodology is given in “Literature
review” section. The proposed methodology is outlined in
“Methodology” section. Examples and limitations are dis-
cussed in “Experiments and results” section. Finally, in
“Conclusions” section, conclusions and future work are sum-
marized.

Literature review

In general, bio-signal-based HCI systems aim at achiev-
ing the direct information exchange functionality between
humans and computers without using hands and/or voice.
The literature on bio-signals and their applications covers a
large spectrum. Medicine, psychology, engineering and mar-
keting science are the main domains contributing to literature
on this topic. In this paper, only the literature directly related
to the proposed research (bio-signal-based assistive prod-
uct and/or user interface design and development and signal
processing algorithms) is discussed.

Bio-signal-based product design and development

As a result of advancing technology, a number of bio-signal
controlled assistive devices have been developed in recent

years [hand-free wheelchair design by Wei and Hu (2011),
prosthetic hand by Boostani and Moradi (2003) and commu-
nication medium for disabled children by Takano and Suzuki
(2014)]. While both researchers and corporations heavily
invested in developing practical technologies to assist dis-
abled users, a study done by Zickler et al. (2009) in three
European countries among the current users of technology
driven assistive devices concluded that physically disabled
users expect the development of new solutions and/or better
alternatives in the areas of communication and entertainment
including computer control. The SSVEP based BCI solution,
introduced in this paper to design a user interface for geo-
metric modeling fills the much needed gap in the assistive
technology domain.

One of the most reliable bio-signal sources is muscle con-
tractions (EMG signals). A number of applications including
commercial products have been reported. EMG signals are
voltage or current changes which are caused by the muscle
activities. In recent years, EMG-based prosthetic applica-
tions such as the prosthetic hand have been introduced
(Boostani and Moradi 2003; Yokoi et al. 2004; Fariman et al.
2015). In the work of Crawford et al. (2005), a 4-freedom
robotic arm, controlled by EMG signals, is elaborated. An
approach to control a computer by using unprocessed EMG
signals is presented in Felzer and Freisleben (2002). In a later
work, Felzer et al. (2009) introduced a system that enables
physically disabled people to control various devices around
them using intentional muscle contractions. Another line of
research work is the design of intelligent robots for assist-
ing disabled people (Akdogan et al. 2009). In their work,
Takano and Suzuki (2014) introduce an EMG based solu-
tion to enable communication between children with autism
spectrum disorders and their parents. EMG signals captured
from child’s facial expressions are successfully translated
into meaningful expressions for adults to communicate with
the child.

One of the most successful and common applications of
bio-signal-based control systems is the wheelchair design.
Rechy-Ramirez and Hu (2014) used facial expressions along
with limited hand gestures to control the wheelchair. Nguyen
and Nguyen (2011) proposed a wheelchair control system
based on EMG and EOG signals. Wei and Hu (2011) pro-
posed an hybrid system to realize a hand-free control of a
wheelchair. A review of current applications of bio-signals
can be found in Ribeiro et al. (2013).

Bio-signal identification techniques

Research on EEG-based BCI technology mainly focuses on
signal processing, signal generation methods, electrode posi-
tioning on the human body and usage of an optimal number of
electrodes. There are two main reasons for the brain to gener-
ate signals: reaction to an external stimulus; and the brain’s
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natural activities. In this section, we provide a brief sum-
mary of current work in the area of EEG signal processing.
An overview of signal processing methodologies used for
bio-signal processing is given in the review paper by Ahsan
et al. (2009).

Typically, for SSVEP-based BCI systems, feature extrac-
tion is performed in the frequency domain (Luo and Sullivan
2010). Hence, spectral analysis approaches are widely used.
Consequently, various feature extraction approaches based
on the detection of power spectrum of density (PSD) peak
values at the stimulation frequencies are proposed (Wang
et al. 2006; Cheng et al. 2002; Gao et al. 2003; Muller-Putz
and Pfurthscheller 2008). Spectral analysis methods based
on phase changes are presented by Kluge and Hartmann
(2007) and Jia et al. (2011). In order to improve the accu-
racy of feature extractions, Wang et al. (2004) introduced
multi-electrode EEG acquisition technique. In their work,
Wang et al. (2004) further investigated the impact of elec-
trode location selection on the quality of the signals so that
the background noise is separated with higher accuracy. In
a more recent study, Kamrunnahar et al. (2009) provided
guidelines to select optimum number of electrodes and their
locations on the scalp for EEG signal acquisition. It should
be noted that our work differs from both Wang et al. (2004)
and Kamrunnahar et al. (2009) as we only use a bipolar elec-
trodes to conduct our experiments in order to provide a low
cost and less invasive alternative for BCI applications.

In this study, we introduced an EEG signal processing
method based on chaos theory (Freeman 1987, 1988). More
specifically, we utilized LSDE to identify the existence of
weak periodical signals inside of highly complex EEG data.
In its steady-state, brain functions can be described as a
chaotic state. When an external source stimulates the brain,
the chaotic state of the brain is disturbed. The research prob-
lem we tackle in this paper is the accurate identification of
brain’s response to a unique external stimulus signal. We
achieve our goals by utilizing the properties of Lorenz attrac-
tor. Lorenz attractor is highly sensitive to the changes of its
system parameters at all times and a small perturbation in
these parameters causes a significant change in the motion
of the Lorenz attractor. Once the Lorenz system parameters
are calibrated for the chaotic state of the brain, small distur-
bances to that state can be captured from the Lorenz attractor.
In our case we are interested in generating a disturbance in
the brain through an external stimulus signal and to cap-
ture the presence of response to this signal in the EEG signal
cloud. These properties of chaos theory has been successfully
used in various applications such as investigation of seismic
activities (Yang et al. 2012), development of radar technol-
ogy (Willsey et al. 2011) and analysis of internet activities
(Liu et al. 2011). Furthermore, chaotic nature of available
data for quality control (Torres et al. 2002) and reliability
and maintenance control (Chouikhi et al. 2014) in manu-
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facturing industry has been addressed in similar ways. The
common theme of these applications as well as the brain func-
tions is that they are all in a chaotic state during their natural
activities. Therefore when a low frequency external activity
impacts them, its presence can be measured through Lorenz
attractor. Chen and Wang (2007) propose an approach based
on chaos theory for detecting weak square wave signals under
a strong noisy background. A method to improve the accu-
racy for detecting weak periodic signals is proposed in Li
(2005). In their works, Birx and Pipenberg (1992) and Wang
etal. (1999) utilize the notion of nonlinear dynamic systems’
sensitivity to its parameters for detecting weak signals buried
in the random Gaussian noise.

Our main goal in this research is to provide a geometric
modeling application that is fully controlled by brain signals.
Inthe proposed system, a computer communicates with a user
by generating various stimulus signals which are imbedded
into available design commands (each command is associ-
ated with a stimulus signal). Stimulus signals trigger brain
to respond with a symmetric signal pattern. However, the
received brain signal is weak and buried inside of the brain’s
natural activities. In the proposed research, brain signals are
analyzed using modified Lorenz systems of differential equa-
tions. Successful match between the stimulus signal and the
Lorenz system output indicates the intention of the user. The
proposed signal processing method has been successfully
applied in a BCI system to realize a hand-free geometric
modeling application. The developed technology fills a much
needed gab in the current technology as it focuses on the
entertainment which is the present-day needs/desires of phys-
ically challenged people (Zickler et al. 2009).

Methodology

Designing a system that enables geometric modeling using
bio-signals requires an interface design and an accurate bio-
signal processing algorithm. In this work, we introduce a
signal processing method to realise a user interface design
which is similar to today’s computer applications where users
are provided with multiple options simultaneously. This goal
is achieved by a bio-signal based computer interface design
where instructions to computer are generated through user’s
concentration on the intended command in the computer
monitor. In the proposed design, all commands on the com-
puter monitor are linked to a unique stimulus signal. User
makes the decision (selecting one of the available options
from the menu) by producing a response signal to the stimu-
lator. Brains response to the stimulus signal is weak SSVEP
and buried inside of the brain’s natural activities. Even if the
user is responding to a stimulus signal, identification of true
intend of the user from highly complex EEG data requires a
strong signal processing algorithm. In this work, we exploited
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Fig. 1 Structure of stimulation
frequencies on an LCD
stimulator
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Fig. 2 The configuration of flicking targets: illustration of the BCI design used for performing geometric modeling (frequencies for flickering

targets from left to right are 12, 10, 13, 15, and 14 Hz)

the modified Lorenz nonlinear dynamic system (LNDS) to
analyze raw EEG signal. A sine signal detection capability
is introduced into the Lorenz system in order to identify the
presence of a weak periodic signal. In this section we provide
the details of stimulator design, signal processing algorithm
and the user interface design.

LCD stimulator design

The proposed LCD type stimulator design considers the fact
that brain responses to an external stimulus signal by pro-
ducing a response signal which is statistically equivalent to
the stimulus signal with an acceptable error. In order to adapt
this principle to a computer application, we link each avail-
able command on the monitor with a unique stimulus signal.
When a user focuses on the intended command, the stimulus
signal imbedded into the command triggers the brain to cre-
ate a response signal within the same frequency range as the
stimulus signal. Next, a signal processing method is utilized
to search the existence of a response signal inside of the raw
EEG signal cloud. Successful pairing of the stimulus signal
(correspond to a command) and the brain response enables
users to navigate through a computer application with high
efficiency.

In this work, based on a 60 Hz LCD screen refresh rate,
frequency range between 1 and 30 Hz is used to model
stimulation frequencies (Fig. | illustrates the structures of
stimulation signals). Each unique frequency rate can be used
to associate with a certain control functionality in the com-
puter. In this study we only experimented with the frequency
bands 10, 12, 13, 14 and 15Hz. Consequently, five unique
control commands are achieved through designing five dif-
ferent flickering targets, as shown in Fig. 2.

Data acquisition

In this research work, Infinity ProComp2, manufactured by
Thought Technology Ltd was utilized for bio-signal acqui-
sition. The bipolar electrodes are selected for hardware
configuration. The software package used to collect bio-
signals is the TTL API. The raw EEG data is filtered using
Notch Filter which is imbedded in the Infinity ProComp2
interface. Infinity ProComp2 provides a non-invasive bio-
signal acquisition environment. Four electrodes and a EEG
extender cable are included in a TT-EEG Kkit, that is, one
positive electrode, one negative electrode and two reference
electrodes as well as the EEG extended DIN cable. To retrieve
the bio-signals, two types of electrode configurations is possi-
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F — Frontal lobe
T — Temporal lobe
C — Central lobe
P — Parietal lobe
O — Occipital lobe

Z — The electrodes are
placed in the mid-line

Fig. 3 Positions of electrodes on an international 10/20 system

ble: BIPOLAR configuration, which connect three electrodes
(one positive electrode and one negative electrode as well as
one reference electrode) to the equipment; MONOPOLAR
configuration, which only one positive electrode and two
reference electrodes are used. In this thesis the bipolar hard-
ware configuration is utilized. When used with the Thought
Technology’s API software package (TTL API SDK), the
hardware configuration guarantees a 256 sampling rate/s and
100 % data communication between the hardware and the
third-party applications. The interface is written in openGL
and VC++/C++ in compliance with the library functions pro-
vided by the connection instrument software development kit
version 3.0/TTL APL

Each flickering target worked cyclically: targets are acti-
vated for 4 s of flickering which is followed by a 4-s break.
Hence, the data acquisition and analysis were based on the
data collected during each 4-s period. As suggested in Bin
et al. (2009a,b), we placed negative and positive electrodes
on Ol and O2 locations respectively, and a reference elec-
trode on the left ear (see Fig. 3 for electrode locations). A
sampling rate of 256 Hz was used.

Signal processing

Let p be the sampling period. Since the sampling rate is 256
records per second, a total of 1024 unique data per sampling
period (4 s) is captured. Let Af’ be the value of a single EEG
data and A” be the set of EEG data in period p as AP =
{Ap, Af, ol )»’;,71} for N = 1024. The details of the signal
processing method are discussed below.

Weak periodic signal detecting system

Brain is a highly complex organism which responds to many
external and internal stimuli. One important characteristics of
the brain is that brain produces periodic event-related poten-
tial which is stereotyped electrophysiological response to an
external stimulus (Jin et al. 2011; Bin et al. 2009b). If the
brain is stimulated by visual cues, response signal produced
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by the brain is called steady state visually evoked potentials
(SSVEP). If a brain is stimulate by a well-controlled external
stimuli, in theory, brain‘s response to this external stimuli can
be measured precisely. Presence of stereotyped SSVEP in the
brain indicates that the person is interested in the visual cue
(stimulus). If there are multiple stimulus in the environment
and brain is interested in only one of them, and brain ‘s interest
to this unique stimuli can be successfully identified through
a signal processing algorithm, then this relationship can be
utilized to model brain controlled computer applications to
perform various tasks including geometric modeling.

When stimulated by visual cues, brain’s response to stim-
ulus signal is buried inside of an EEG signal cloud. Recorder
EEG data include not only the response SSVEP data but also
brain‘s natural activities and its response to other uncon-
trolled internal and external stimuli. Moreover, the SSVEP
response is weak compared to brain’s regular activities.
Therefore, it is not trivial to link the disturbance in brain
activities with the stimuli signals. In order to extract these
weak SSVEP responses from the recorder EEG data cloud, a
Lorenz systems of differential equations (LSDE) based sig-
nal processing approach is utilized.

LSDE, a nonlinear dynamic system, is used to model
chaotic dynamic notions of systems. The original LSDE, first
used in Lorenz (1963), is expressed as follows to define a sys-
tem in its chaotic state:

i=o(y—x) ()
Yy=rx—y—xz 2)
z=xy—bz 3)

Equations (1)—(3) model the motion of a Lorenz attractor. The
motion of Lorenz attractor is determined by system parame-
ters o, r, b where xq, yo, zo are the initial conditions. With
the different configurations for these system parameters and
initial conditions, the motion of the Lorenz attractor displays
different behaviour. Chen and Wang (2007) reformulated the
LSDE to detect the existence of weak square wave signals
under heavy noise background. As mentioned in the litera-
ture review section, LSDE based models have been utilized
for seismic activity monitoring and the development of radar
technology. In this work, motivated by the work of Chen and
Wang (2007), we further modified the LSDE in order to detect
the presence of weak SSVEP responses (in the range of 1-30
Hz) in the highly complex brain signal data. Consequently,
we modified LSDE formulation as given in differential equa-
tions (4-6).

X =wvo(y —x)/o (€]
y = wv{r[l + ksin(wvt) + kerilx —y —xz}/w 5)
z=owv(xy —bz)/w (6)
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Fig. 4 a Illustration of outputs of x (t), y (#), and z (¢) of testing system with critical chaos states; b x—y plane: image of system with critical
chaos state; ¢ outputs: x (¢), y (), and z (¢) of system as the sine signal is detected; d x—y plane image of system as the sine signal is detected

where wy, Detected angle frequency wv = 2nfy; fv,
Detected frequency; sin(wyt), Embedded sine function; w,
Characteristic angle frequency of testing system; k., EEG
signal intensity coefficient; A;, Detected EEG signals for
i ={0,1,..., N —1}; V, The number of detected SSVEP
responses; x, yandz, Displacement of the Lorenz attractor
along x, y and z direction

For initializing LSDE parameters o, r, b, and w, the
method suggested in Chen and Wang (2007) is utilized. The
value of k and the range of k, are determined through exper-
iments with subjects. Following set of values are used in the
experiments.

o =10, r =168, b =8/3, w = 70 rad/s,

X0 0
andk =245, and | yo | = | 1
20 0

Feature analysis

In its steady-state (A; = 0, Vi), the Lorenz system is in
a critical chaos situation (L¢) as illustrated in Fig. 4a,
b. Figure 4a provides the critical Lorenz system outputs
(x(@),y(t), and z (t)) in its chaos state for the sampling
duration of ¢ (t = 4 seconds in our case). In an ideal situation
where only sine signals A; = sin (wyt) are input to the sys-
tem (no noise signal-mix is in the input signal set), the system
is in a non-chaos state when the EEG signal intensity coeffi-
cient k, is increased within arange of 0.675-0.74 for stimulus
frequencies of 1-30 Hz in our case. We observed that, during
non-critical chaos state, the corresponding outputs of x (¢),
v (1), and z () tend to be in regular oscillation states as shown
in Fig. 4c. Moreover, a periodic motion around an orbit in
the x—y plane was observed as illustrated in Fig. 4d.

In BCI systems, the response to a given stimulus sig-
nal should be detected in real time. In online experiments,
the parameter k, was determined empirically. The value of
ke varies depends on the subject. In order for the proposed
BCI system to perform with high accuracy, test runs were
performed on each subject for calibration purposes. Conse-

quently, the value of the EEG signal intensity coefficient k,
was estimated empirically from the Lorenz system’s outputs
for each scenario and for each user.

Features extractions

If there is a response from brain to an external periodic
stimulus, periodic disturbance should be visible on the dis-
placement of the Lorenz attractor along the z direction. Let

us define 77 = {Top, Tlp, ... Tnng—l
between two consecutive peek values in z (¢) which are above
a baseline (B) where the baseline is determined during the
calibration (“Appendix 1”). Our experiments show that, when
the designed Lorenz system is disturbed by a pure weak peri-
odic signal within a certain intensity level (0.675-0.74), the
values of 77 in period p are observed to be significantly
reduced as shown in Figs. 5 and 6. Consequently, we designed
a weak periodic signal detection algorithm with the assump-
tion that sudden reduction in T corresponds to the existence
of weak periodic signals. In Figs. 5 and 6, the horizontal axis
represents the number of samplings in each 4-s data seg-
ment. The vertical axis represents the amplitude output of
x (t),y(t) and z (¢). Let us now define urp as the average
of T? in sampling period p.

as the set of time

ST
pry = =200 )
m

Similarly, the significant reduction on 7 in comparison to
the average obtained for the critical chaos state (MTO) reflects
the existence of weak periodic signals. Hence, (o is used as
the threshold (“Appendix 2”). Since, in the proposed SSVEP
BCI application, the goal is to provide multiple options for a
user, a unique threshold (/,LTVO) for each option V (stimulus
signal) is determined through experiments. Our experiments
further suggested that, thresholds are user specific. Conse-
quently, threshold (MTLOW) for all available options on a given
interface are determined for each user () prior to experi-
ments.
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Fig. 6 Features of Lorenz system along z (f) in response to periodic
signal input

Application of signal processing algorithm on geometric
modeling task

In our case, we designed the SSVEP BCI system to han-
dle five unique control-functions. Frequency set V =
{15, 14, 12, 10 Hz} is used to model the navigation control
(up, left, right and down cursor movements) and the 13Hz
frequency band is used for drawing function (revolving about
the center-line). Consequently, a four-step threshold selec-
tion process and their usage in the SSVEP BCI for geometric
modeling is utilized.

i. At p = 0, solve Lorenz system for A? = 0fori =
{0,1,..., N — 1}. Based on the given input parameters
(w, wv, r,0,k, and k,) a baseline and consequently a
set of T are retrieved from z (7). Let 79 be the initial set
of T.

@ Springer

ii. Next, Lorenz system is solved for the given raw EEG
data A”. Subsequently, a new set of T is obtained. Let
this new set of T be represented by 77,

iii. The average time between two consecutive peek values
of z (t) is calculated for each control command V:

o TR
I/LTVO — 1 . iV VV

iv. Decision making: If K19 _Hrp > ey thenitis concluded

that there is an external stimulus to the brain where ery,
is the minimum separation between mean values to make
the decision and it is determined during calibration phase.
The value of er; is sensitive to users. Hence a number
of experiments with a unique stimulation signal are per-
formed on each subject for calibration. If required, EEG
signal intensity coefficient k. is modified accordingly for
calibrating e7,, . Experiments are repeated until a reliable
value for ery, is obtained for each user.

v. Recognize the existence of a command in the SSVEP
BCI system to move the cursor and perform the drawing
action.

Experiments and results

In order to test the capabilities of the proposed EEG feature
extraction method, an online SSVEP BCI system was mod-
eled for performing simple 3D geometric modeling tasks.
The only input to the computer was EEG signals received
from the user’s brain. We invited one female subject with
corrected eyesight and three male subjects with normal eye-
sight. Each subject was invited multiple times to participate in
experiments in order to collect sufficiently large number of
samples to derive meaningful results. Necessary approvals
to conduct such experiment in the university campus were
obtained from University Human Research Ethic Commit-
tee (Certification Number: 30001536). It should be noted
that the objective of these experiments was to demonstrate
the feasibility of achieving SSVEP based BCI application
with bipolar electrodes to perform geometric modeling. The
proposed BCI technology is still in the experimental stage
and it may not address the challenges that physically disabled
users may face during a brain controlled geometric model-
ing task. Experimental results are highly promising for the
development of a low-cost SSVEP based BCI application
for physically disabled users to perform artistic expres-
sions (geometric modeling in our case) to fulfill the highly
desired need (entertainment) of physically challenged people
as highlighted in Zickler et al. (2009). Following steps are
utilized for conducting experiments:
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Table 1 Accuracy rate of moving cursor

Movement Frequency (Hz) Accuracy rate (%)
Up 15 71
Down 10 75
Left 14 83
Right 12 85

i. Prior to the experiments, clear instructions were given to
all subjects.

ii. Inorder to familiarize subjects with the system, sufficient
training was provided. All 4 subjects were invited at the
same time to visit the lab prior to actual experiments. Dis-
comfort/comfort level with the attached electrodes was
surveyed. Finally, an experienced member in the research
lab demonstrated the performance/usage of the proposed
system.

iii. For the actual experiments, subjects were positioned in
front of an LCD monitor, with approximately 45 cm dis-
tance between subject and monitor.

iv. Initial tests were conducted for tuning parameters and
determining thresholds (7" and B) for each subject. The
accuracy of proposed methodology is tested on subjects.
Subjects were instructed to move the cursor up, down,
left and right. The accuracy rate for each command is
provided in Table 1.

v Users were asked to complete a geometric modeling task.
In our case, we asked user to draw a vase shape in 2D
through:

a) connecting predefined coordinates in a sequential
order as seen in Fig. 7a—c;

b) moving the cursor freely in the 2D space to draw the
2D view of a vase as seen in Fig. 7g, h.

Geometric modeling

Experiments with 4 invited subjects through large number
of trials clearly show that the designed Lorenz systems suc-
cessfully detect the existence of periodic response signals
as the subject focuses on the corresponding flickering target
(intended command). Subjects were asked to perform two
different drawing tasks. First, subjects were asked to follow
the pre-defined trajectory (see Fig. 7a) which is necessary
to generate a geometric model of the vase seen in Fig. 7c.
Initially, the cursor was located at the lower end of the cen-
terline. While the subject attempted to reach the next correct
data point, all failures (errors) and successes (correct naviga-
tion) were recorded. Figure 7d shows that the female subject
completed the given test with a single error (circled in the fig-
ure). Once all the data points were successfully determined,
the vase given in Fig. 7f was created by revolving data points

about the center line. The trajectory was formed by using the
B-spline to fit the data points. The test results show that all
subjects were able to reach the desired shape with varying
accuracy rates.

In the second part of experiments, subjects were asked to
design a vase of their own choice. One of the outcomes of
this experiment is given in Fig. 7g—i. Since there was no cor-
rection mechanism, the process did not always result in the
intended shape. However, movement towards the intended
direction (left or up) was achieved successfully in most
instances. Since the cursor was located at the bottom of the
center line at the beginning of experiments, we expected all
users to move the cursor to upward direction. Furthermore, in
order to create a vase shape, cursor has to be moving towards
left direction least for the first two or three steps. Our experi-
ments with all four subject demonstrated that, all users were
able to keep the cursor on the left of center line and above the
start point. As seen in Fig 7g, the cursor was moved upward,
left and right as intended and never crossed the center line
during the experiment.

The test results show that all subjects were able to reach the
desired shape with less than 40 % of error with an average
error rate of 27 %. Subjects were invited multiple times to
participate in the study (least twice). Results showed that
the performance of the female participant (average error rate
is less than 8 %) was better than male participants (average
error rate is 32 %). We believe the performance discrepancy
between female and male subjects were not associated with
the gender, rather it was related to the level of experience
with the system. She was a member of the research lab and
regularly participated in experiments. Hence we conclude
that, through training, potential users can achieve complex
geometric modeling tasks with higher accuracy.

Discussion and limitations

Itis clear from the experimental results that during each draw-
ing process, undesired control is always possible. Although
the thresholds for 7 and B and the parameter k., are highly
reliable in offline tests, it is not possible to guarantee the reli-
ability of the selected thresholds during the entire real-time
experiments. The longer the subject is tested; a decrease on
the accuracy level is observed. While visual fatigue is one of
the major factors for the thresholds to be less effective over
the time, various external factors such as interference from
the other flickering targets and the brain’s own activities as
well as the other external noise further impacted the qual-
ity of results. The experiments also revealed the importance
of the configuration of the thresholds and parameter k, in
the process of improving the online classification accuracy
(reducing undesired controls).

Furthermore, none of the invited participants had physi-
cal challenges. They all had significant level of experiences

@ Springer
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Fig. 7 a—c A desired trajectory of a bottle. d—f A real drawn bottle image. g—i A real trajectory of a bottle image

with the various computer applications. Although the notion
of communicating with computers through bio-signals was
recent introduction to all participants in this study, these
experiments are not conclusive for the proposed BCI appli-
cation’s suitability for the physically disabled users. Hence,
further experiments should be conducted on users with phys-
ical disabilities.

Conclusions

In this paper, we introduced the tools for achieving a SSVEP
based BCI technology that can assist physically disabled
users to interact with computer graphics applications. The
uniqueness of the proposed BCI application is that user
interacts with a computer application simply by focusing
on the command he/she intends to perform. This enables us
to design a user interface which is intuitive and compatible
with the today’s computer applications. In order to retrieve
the user’s intention from raw EEG data, we proposed a novel
weak periodic signal detection technique based on chaos the-
ory. Chaos theory has been successfully used in monitoring
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(b)

(h)

seismic and internet activities, in the development of radar
technology and for the reliability and maintenance control
purposes. In this paper we extended the application of chaos
theory for analysing EEG data that consists of response sig-
nals to artificial stimuli. Experiments show that the proposed
method successfully detects the existence of the weak peri-
odic responses in the highly noisy EEG data. Results are
encouraging for the realization of a simple and inexpensive
BCI application for assisting physically disabled people to
interact with computers to perform various creative opera-
tions including drawing and modeling.
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Appendix 1: Calibration of baseline

The baseline (B) is determined offline from z (¢) which is the
output of the Lorenz system for A; = 0, Vi. In its chaos state
(A; = 0,Vi), Lorenz system output along z direction pro-
duces a feature as a sudden increase from its lowest values
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(highlighted area in Fig. 5). A baseline (B) is determined
in such a way that all peak values (z*) of z () that con-
sist of Lorenz system features at its chaos state are above
the selected line. Initial value is determined empirically by
observation from the fluctuation of z (¢) data.

Appendix 2: Calibration of the threshold for T

The threshold for T (u;) is determined during initializations
at the beginning of experiments. Threshold is used to deter-
mine if there exists an external stimulus signal to the Lorenz
system. Once a threshold value for B is determined, a series
of T are identified from z (¢#) which is the output of Lorenz
system in its chaos state. Consequently a threshold value
(T™) is identified from 7. Experiments showed that average
of T (ur) leads to a strong control capability as a threshold
in our case. Consequently, we used 7* = w7 in our experi-
ments.
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