Figure 1.1: Pendulum.

Pendulum Equation

Consider the simple pendulum shown in Figure 1.1, where | denotes the
length of the rod and m denotes the mass of the bob. Assume the rod is
rigid and has zero mass. Let # denote the angle subtended by the rod and
the vertical axis through the pivot point. The pendulum is free to swing
in the vertical plane. The bob of the pendulum moves in a circle of radius
I. To write the equation of motion of the pendulum, let us identify the
forces acting on the bob. There is a downward gravitational force equal to
my, where g is the acceleration due to gravity. There is also a frictional
force resisting the motion, which we assume to be proportional to the speed
of the bob with a coefficient of friction k. Using Newton's second law of
motion, we can write the equation of motion in the tangential direction as

mlf = —mgsing — ki

Writing the equation of mation in the tangential direction has the advantage
that the rod tension, which is in the normal direction, does not appear in
the equation. Note that we could have arrived at the same equation by
writing the moment equation about the pivot point. To obtain a state-

space model of the pendulum, let us take the state variables as ; = 6 and
z; = . Then, the state equation is given by
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Example 3. Cnnsidgr the pendulum equation without friction:
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and let us study the stability of the equilibrium point at the origin. A
natural Lyapunov function candidate is the energy function
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Clearly, ¥(0) = 0 and V(z) is-pﬁsiti\re definite over the domain —2r <
ry < 27. The derivative of V(z) along the trajectories of the system is
given by
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Thus, V(z) satisfies conditions of Theorem = and we

conclude that the origin is stable. P



Example 3.2 Consider again the pendulum equation, but this time with
friction:
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Let us try again the energy as a Lyapunov function candidate.
¥ix) = (%) (I —ecoez1)+ ;:3

Viz) = (%)iisin.‘c1+12i‘:

- (8)-

Vir) is negative semidefinite. It is not negative definite because Viz)=0
for 7 = 0 irrespective of the value of xy; that is, V(z) = 0 along the =,-
axis. Therefore, we can only conclude that the origin is stable. Howewver,
using the phase portrait of the pendulum equation, we have seen that when
k = 0, the origin is asymptotically stable. The energy Lyapunov function
fails 1o show this fact. Lot us look for a Lyapunov function V(z) that
would have a negative definite V(z). Starting from the energy Lyapunov
function. let us replace the term 1% by the more general quadratic form

Lz Pz for some 2 x 2 positive definite matrix 7.
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For the quadratic form L7 Pr to be positive definite, the elements of the
matrix P must satisfy

puL >0 paz =0 pupn = piy =0

The derivative ¥z} 15 given by
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Now we want to choose py, Pia, anid pz such that V(z) is negative definite.
Since the eross product terms oo sinz) and £y2g are sign indefinite, we will
cancel them by taking
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With these choices, pya must satisfy
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for V{r} to be positive definite. Let us take pya = 0.5(k/m). Then, V{r)
is given by



Viz) = - % (?) (%J I sinzy — % (%) B

'[ he term zysinzy > 0 forall 0 < |#1] < « Defining a domain D by

= {z € R? | |z1| < m}, we see that V(z) is positive definite and V{z)
is nega.twe definite over 0, Thus, we conclude that the
origin is asymptotically stable, Fal

In searching for a Lyapunaov function in Example 5. 2 we approached the
problem in a backward manper. We investigated an expression for V(z) and
went back to choose the parameters of V(z) s0 as to make V{z) negative
definite. This is a useful idea in searching for a Lyvapunov function. A
procedure that exploits this idea is known as the variable gradient method.
To describe this procedure, let V(z) be a scalar function of = and glz) =
TV = (8V/92)T. The derivative V{z) along the trajectories is
given by

Viz)= 5= f(z) = g7 () (2]

The idea now is to try to choose giz) such that it would be the gradient
of a positive definite function Viz) and, at the same time, V(z) would be
negative definite. It is not difficult to verify that gix) is the
gradient of a scalar function if and only if the Jacobian matrix [Gg/82] is
symmetric, that is,
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Under this constraint, we start by choosing g(z) such that g7 (z)f(z) is
negative definite. The function ¥{z) is then computed from the integral
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The integration is taken over any path joining the origin to z. Usually, this
is done along the axes; that is,
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By leaving some parameters of g(r) undetermined, one would try to chonse
them to ensure that ¥{x) is positive definite. The variable pradient method

can be used to arrive at the Lyapunov function of Example 3.2. Instead of
repeating the example, we illustrate the method on a slightly more general
systen,

Example 3.3. Consider the second-order system
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where o = 0. R(-) i3 locally Lipschitz, {0} = 0 and yhly) = 0 for all
v # 0, y € (=he) [or some positive constants b and ¢. The pendulum
equation 5 a special case of this system. To apply the variable gradiem
method, we want to choose a second-order vector g{x) that satisfes
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and =
Viz) = j g (y)dy >0, forzx #0
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Let us try

_ [ alz)z + Blz)z2
alz) = { y(z)zy + Blz)T2

where the scalar Functions a(), B(-), (), and §(-) are to be determined.
To satisfy the symmetry requirement, we must have
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The derivative V(x) is given by
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To cancel the cross product terms, we choose
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To simplify our choices, let us take d(z) = 6 = constant, wx) =g =
constant, and G(x) = @ = constant. Then, al{r) depends only on Iy, and

the symmetry requirement - satisfied by choosing § = y. The expressinn
for glz) reduces to
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By integration, we obtain
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Choosing 4 > U and 0 < v < af ensures that V{z] is positive definite and
Vi{z) is negative definite. For example, taking 7 = aks for 0 < k < 1 yields
the Lyapunov function
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which satisfies conditions of Theorem £ over the domain

D={zeR| b o< ¢}. Therefore, the origin is asymptotically
stable. B

where



Consider the first-order differential eguation

&= ~g(zr)

where g(x) is locally Lipschitz on (=a,n) and satisfies
gl0)=0; rglx) >0, ¥r#0 rc (—a, a)

The system has an
isolated equilibrium point at the origin, It & not difficult in this simple
example to see that the crigin is asymptotically stable, because solutions
starting on either side of the origin will have to move toward the origin
due to the sign of the derivative +. To arrive at the same conclusion using
Lyapunov's theorem, consider the function

¥ix) =j:sr{y} dy

Over the domain P = (—a,a), Viz)is continuously differentiable, 1¥(D) =0
and V(z] > 0 for all 2 ¢ 0. Thus, Viz) is a valid Lyapunov function
candidate. To see whether or not Viz) is indeed a Lyapunov fanction, we
caleulate its derivative along the trajectories of the system,

Vi) = Grl-ole)] = ~s=) <0, v 2 € D — (0}

Thus, by Theorem 3.1 we conclude that the origin is asymptotically stable,
Fu



